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’ INTRODUCTION

Protein�ligand docking methodologies play a key role in
structure-based drug discovery. A range of protein�ligand
docking programs have been reported in the literature, and an
increasingnumber of these tools are available to the community, e.g.,
DOCK,1 GOLD,2,3 FlexX,4 FRED,5 Surflex,6 GLIDE7,8 and ICM.9

The performance of a docking program is normally measured
by its ability to reproduce the ligand binding modes for a test set
of protein�ligand complexes from the Protein Data Bank10

(PDB). Although other measures for docking success have been
proposed,11�13 the most commonly used performance indicator
is the percentage of ligands for which the top-ranked solution
produced by the docking program is within a defined root-
mean-square distance (RMSD) cutoff (generally 2 Å) of the
experimental binding mode; we will refer to this as the “docking
performance”.

The most straightforward and historically most applied valida-
tion protocol is to dock each ligand against its native protein
conformation; i.e., the 3D coordinates of the protein are taken
from the same structure that contained the ligand; we will refer to
this as “native docking”. In real-life applications where the binding
modes of newly designed compounds are predicted, the protein
structure used to dock against will be that of a complex containing
another ligand or that of the apo form of the protein; we will refer to
this as “non-native docking”. Finally, in ensemble docking, the ligand
is docked against a number of non-native conformations of the
protein. The highest scoring bindingmode is then selected from the
ensemble of dockings against all protein conformers.

Over the past decade, a significant number of test sets for
assessing docking performance have been described in the
literature, and many protein�ligand docking programs have
been assessed against these sets. Some of the results of these
studies are listed in Table 1. It is apparent from these data that
non-native docking is a much harder problem than native dock-
ing, with docking performance approximately 20% lower for non-
native docking. What is interesting, however, is that native
docking performance also varies significantly between different
studies (39�80%), and the same holds for non-native docking
performance (26�63%). There are various reasons why this
might be the case, including (i) the quality of the docking programs
used, although even for the same docking program, performance
varies significantly between studies; (ii) the types of targets and
ligands included in the studies; (iii) the level of experience
authors have with the docking software; (iv) the quality of the
X-ray structures in the set (some structures may have poor electron
density for the ligands, disorder, etc., in-house structuresmight not be
fully refined); (v) the preparation of the binding sites and ligands
(e.g., protonation statesmight be incorrect); (vi) protocol differences
(e.g., site definitions can differ, some authors preoptimize complexes,
etc.).One result we found particularly intriguing is that ofWarren and
colleagues, who obtained comparatively poor docking performance
on their test set, which included only in-house GSK X-ray structures
containing compounds that were synthesized to support active
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ABSTRACT: This paper addresses two questions of key
interest to researchers working with protein�ligand docking
methods: (i) Why is there such a large variation in docking
performance between different test sets reported in the litera-
ture? (ii) Are fragments more difficult to dock than druglike
compounds? To answer these, we construct a test set of in-
house X-ray structures of protein�ligand complexes from drug
discovery projects, half of which contain fragment ligands, the
other half druglike ligands. We find that a key factor affecting
docking performance is ligand efficiency (LE). High LE com-
pounds are significantly easier to dock than low LE compounds, which we believe could explain the differences observed between
test sets reported in the literature. There is no significant difference in docking performance between fragments and druglike
compounds, but the reasons why dockings fail appear to be different.



5423 dx.doi.org/10.1021/jm200558u |J. Med. Chem. 2011, 54, 5422–5431

Journal of Medicinal Chemistry ARTICLE

drug discovery projects. On their test set, using GOLD, Warren
only obtained a docking performance of 36%, whereas on the
Astex non-native set (a carefully constructed set of drug targets
containing druglike ligands from the PDB) we obtained 61%,
also using GOLD.We were interested to know what causes these
differences between sets and whether a similarly poor docking
performance would be obtained for an Astex in-house set of
X-ray structures of protein�ligand complexes, all determined to
support drug-discovery projects.

Additionally, we wanted to investigate docking performance
for fragment ligands vs larger, more drug-sized ligands. It has
been argued that docking fragments is a particularly difficult
problem. Free energy differences between different binding
modes of a fragment are generally assumed to be much smaller
than those of larger compounds. Given the inaccuracies inherent
in current scoring functions, these smaller energy differences
could make it more difficult to distinguish the correct binding
mode of a fragment from proposed incorrect binding modes.
Several papers discuss fragment docking, but the test sets have
either been small (e.g., in the study by Kawatkar and colleagues
on prostaglandin D2 synthase and DNA ligase22 and that by
Loving et al. on 12 protein-fragment complexes23) or the definition
of what constitutes a fragment has been quite broad (like in the
study by S�andor and colleagues,15 where a relatively high molecular
weight cutoff of 300 Da was used). More importantly, to the best
of our knowledge, no comprehensive study has been conducted
to directly compare the docking of fragments and the docking of
druglike molecules.

Here, we construct a test set of in-house structures from Astex’s
drug discovery projects. The set comprises 206 protein�ligand
complexes for 11 drug targets; 106 of these structures are
complexes with fragments, and the remaining 100 structures
are complexes with larger, more druglike ligands. We then use
GOLD to run native, non-native and ensemble docking experi-
ments against this test set. In addition, we apply several rescoring
protocols, including minimization and scoring of each binding
mode in the AMBER molecular mechanics force field.24,25 Next,
we discuss factors that may influence docking performance.
Finally, we compare the docking performance of fragments to

that of druglike compounds and we analyze the different
reasons why dockings of fragment and dockings of druglike
compounds fail.

’METHODOLOGY

Test Set Construction. Protein�ligand complexes were
selected from our in-house database of X-ray structures. As a
surrogate for PKB we used structures of the bPKA-PKB chimera
described previously.26 For each target, only structures for which
the ligand was considered either a “fragment” or “druglike” were
considered. Fragment ligands were defined to contain no more
than 15 heavy atoms, whereas druglike ligands had to contain at
least 20 heavy atoms. In addition, fragment ligands comply with
the “rule of three”,27 the only exception being that we included
two β-secretase fragments that have four hydrogen bond donors.
Druglike ligands comply with the “rule of five”.28 These defini-
tions ensure that there is a clear distinction between the proper-
ties of the two sets of compounds. Next, for each set of structures
(i.e., fragments and druglike compounds separately) ligands were
clustered based on their Daylight fingerprint.29 We used a single-
linkage clustering algorithm, with a similarity cutoff of 0.6; i.e.,
after clustering, no two compounds in different clusters have a
Daylight similarity greater than 0.6. Next, one complex was
selected from each cluster until a maximum of 10 structures
was reached or until the clusters had been exhausted. In the
selection process, we ensured that there was clear electron
density for the ligand and that the binding mode had been
unambiguously defined. Also, we tried to include structures that
we have published and deposited in the PDB. Finally, wherever
possible, we selected “matching” fragments and druglike com-
pounds, i.e., where the druglike compound was derived from the
fragment hit. Using this approach, for 11 targets we could identify
a sufficient number of structures for both fragments and druglike
compounds; these targets are listed in Table 2. For each target,
structures were carefully superimposed based on their binding
site residues, using methodology we have previously described.17

Ligand and Protein Preparation. Ligands were prepared in
the tautomer and protonation state in which we believe they bind
to the target. The 3D coordinates for the ligands were generated
from SMILES strings using Corina.31 For each target, binding
sites were prepared by consulting the modeler who had worked
on that particular project. Themodeler identified the binding site
definition most commonly used by the project team, and then
this template was used to copy protonation states, tautomeric
states, rotamers (for asparagine, glutamine, and histidine residues),
and key active site water molecules onto each of the selected
protein structures in the test set. The protocol used for this was
largely the same as the one used to construct the Astex non-
native set.17 Included water molecules are either highly con-
served or of key importance for ligand binding (more details are
given in the Supporting Information). Protonation states of
protein side chains were assigned according to their pKa values;
for β-secretase, the two catalytic aspartic acid residues were both
deprotonated.
Docking and Scoring. GOLD, version 5.0.1, was used for all

the work described in this paper. Four different scoring functions
were used to drive the dockings: Goldscore,2,3,32 Chemscore,33�35

ASP,36 and ChemPLP.37 All ligands in a target set (e.g., p38
fragments) were docked against all protein conformers in that
set. The search algorithm was set to run 15 dockings, of 100 000
genetic algorithm (GA) operations each, using the “diverse

Table 1. Recent Literature Studies into Native, Non-Native,
and Ensemble Docking Performance (at 2 Å RMSD) on Test
Sets of Significant Size

first author year structures targets type

docking

performance (%)

Tuccinardi14 2010 711 g80 native 60

Tuccinardi14 2010 421 22 non-native 37

S�andor15 2010 190 78 native 80

S�andor15 2010 63 8 non-native 63

Bottegoni16 2009 1113 99 non-native 47

Bottegoni16 2009 1113 99 ensemble 68

Verdonk17 2008 1112 65 non-native 61

Verdonk17 2008 1112 65 ensemble 67

Sutherland18 2007 246 8 native 39

Sutherland18 2007 246 8 non-native 26

Hartshorn19 2007 85 85 native 79

Warren20 2006 136 7 non-native 36

Friesner7 2004 282 native 71

Perola21 2004 150 63 native 61
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solutions” option in GOLD (see below). Water molecules were
allowed to spin but not toggle on and off.38 The idea here was
that the ensemble docking protocol would hopefully select the
protein conformation with the best water configuration for that
ligand. Also, this is the approach modelers generally would have
taken, i.e., to dock against a particular configuration of water
molecules (spinning but not toggling) that was considered
appropriate for the chemotype of the ligand. By use of the
superimposed binding sites, for each target set the binding sites
were defined to include all protein atoms within 5 Å of a heavy
atom in any of the ligands in that set. In previous studies we have
always used a cutoff of 6 Å around a single ligand, but as we
are using about 10 superimposed ligands here, a cutoff of 5 Å is
more appropriate. Each docking solution was rescored in the
three scoring functions not used for docking (i.e., Chemscore,
ASP, and ChemPLP if Goldscore was used to drive the docking),
allowing the ligand to relax in the rescore function. In addition, all
solutions were minimized and rescored using AMBER (see
below). All docking runs were repeated three times.
We also scored the X-ray binding mode of each ligand against

each protein conformer. To do this, we used the superimposed
set of protein�ligand complexes. Each ligand (in its X-ray
geometry) was placed into the binding site of each protein
conformer (native and non-native), and the local optimization
mode35 in GOLD was used to optimize the terminal protein and

ligandOH andNH3 groups (the Goldscore function was used for
this local optimization). Each of these optimized complexes was
then further relaxed in each of the four scoring functions, using
the SIMPLEX algorithm in GOLD. In addition, each of the
optimized complexes was minimized in AMBER using the
protocol described below.
Diverse Solutions. A standard GOLD job consists of a number

of docking runs of a ligand against a target. Until recently, each of
these docking runs were carried out completely independently
such that often the same (or a very similar) solution was
generated repeatedly. To ensure a wider range of binding modes,
we introduced the “Diverse Solutions” option into GOLD.When
this option is switched on, GOLD keeps track of the solutions
produced by each of the preceding docking runs. During each
docking run, for each new solution produced by the GA, the
RMSD is calculated against the solutions produced by previous
docking runs. Two parameters then determine whether a solu-
tion is accepted into the pool of GA solutions. The first
parameter, divsol_rmsd, defines an RMSD threshold that deter-
mines whether the new solution belongs in the same cluster as an
existing solution. The second parameter, divsol_cluster_size,
determines howmany solutions GOLDwill allow in each cluster.
If the newly produced solution would belong in a cluster that is
already full, it is discarded. Here we ran 15 dockings, with
divsol_rmsd = 1.5 Å and divsol_cluster_size = 3, which generally

Table 2. Composition of the Fragment and Druglike Sets Used in This Worka

Fragment Set
target N MW ClogP potency (μM) LE PDB code

Aurora A 9 183(23) 2.0(0.5) 110�0.86 0.39�0.72 2w1d

β-secretase 10 200(29) 1.8(0.9) >1000�310 <0.27 to ∼0.37 2ohl, 2ohm, 2ohn

Cdk2 10 152(33) 0.9(0.7) ∼1000�62 0.36�0.59 1wcc, 2vta, 2vth, 2vtl, 2vtm

FGFR1 10 176(30) 1.2(1.0) 140�1.2 0.39�0.58

HSP90A 10 154(17) 1.3(0.8) ∼1000�104 ∼0.34�0.54 2xdk, 2xds

iNOS 10 159(23) 1.3(0.6) ∼1000�14 ∼0.31�0.60 1m8db

JAK2 10 150(14) 0.8(0.7) ∼1000�6.5 ∼0.37�0.60

MetAP2 10 166(16) 1.3(1.3) ∼1000�7.2 ∼0.37�0.57

p38 7 163(34) 1.7(0.7) >3000�410 0.26�0.31 1wbo, 1w7h

PKB 10 163(35) 1.6(0.8) ∼1000�32 ∼0.35�0.62 2uvx, 2uw3

urokinase 10 164(37) 1.2(1.2) >1000�99 <0.29�0.55 2vin

Druglike Set
target N MW ClogP potency (μM) LE PDB code

Aurora A 10 318(47) 4.0(0.7) 1.3�0.0058 0.29�0.49 2w1f

β-secretase 8 364(81) 3.7(0.9) 970�0.19 0.15�0.33 1w51, 2ohu, 2va7

Cdk2 10 362(51) 2.5(1.4) 3.2�0.0026 0.30�0.45 2vtp, 2vts

FGFR1 10 346(51) 3.0(1.2) 42�0.0013 0.30�0.40

HSP90A 10 346(73) 3.0(0.8) 3.1�0.00040 0.31�0.57 2xab, 2xhr, 2vcib

iNOS 7 302(34) 2.6(1.0) ∼300�0.0084 ∼0.24�0.55

JAK2 10 342(46) 2.8(1.0) 0.55�0.0012 0.36�0.49 2w1i

MetAP2 10 344(54) 2.9(0.8) 74�0.012 0.25�0.44

p38 8 395(82) 3.5(0.6) ∼1000�0.12 0.15�0.35 1w83

PKB 10 340(49) 3.3(0.7) ∼10�0.00050 0.30�0.49 2uw5, 2vo6, 2jdv

urokinase 7 358(53) 3.4(0.4) 260�0.020 0.23�0.44
aNumber of complexes (N), average molecular weight (MW) and average calculated logP (ClogP30) are listed. Standard deviations are given in
parentheses. Also listed are potency and Ligand Efficiency (LE) ranges, and the entry codes of complexes that are available in the PDB. bThese two
structures (1m8d and 2vci) were deposited in the PDB by other researchers; all other PDB codes in this table were deposited by Astex; we used in-house
structures for all the docking studies presented in this study.
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results in five different clusters, each containing three solutions.
TheDiverse Solutions option is not designed to improve docking
performance directly but is particularly useful when the solutions
are passed on to a rescoring protocol. Also, in real-life docking
applications, a lot of the analysis and interpretation of docking
results is still done visually by project modelers and we have
found it beneficial to have multiple diverse solutions to consider.
AMBER. In addition to rescoring the docked poses using the

scoring functions available in GOLD, we also implemented a
force field based rescoring scheme using AMBER 9. Full details of
the methodology we used are provided in the Supporting
Information, and so only a brief summary is presented here.
For each docked complex, first the positions of hydrogen atoms
were optimized using a short energy minimization with heavy
atoms held fixed. A second energy minimization was then
performed, with the ligand and any residues within 10 Å of a
ligand heavy atom allowed to move. Both minimizations were
performed using a distance-dependent dielectric constant and a
cutoff of 12 Å for nonbonded interactions. Finally an interaction
energy was calculated for the optimized complex, using a
generalized Born solvation model39 and no cutoff for nonbonded
interactions.
Docking Performance Assessment. For native docking the

RMSD between the top-ranked solution and the X-ray binding
mode can be computed directly from the docked and X-ray
coordinates of the ligand. For non-native and ensemble docking,
the binding site of the non-native protein conformer (together
with the docked ligand) needs to be superimposed on the native
protein�ligand complex in order to calculate the ligand RMSD
and hence the docking performance; this was done using a
procedure we have described previously.17

Docking performance was defined as the percentage of com-
plexes in a set (e.g., “fragment” or “druglike”) for which the
RMSD between the top-ranked solution and the X-ray binding
mode is below a certain cutoff. In the literature, an RMSD cutoff
of 2.0 Å is used widely to assess docking performance, and for
druglike compounds this generally is appropriate. However, in
our experience an RMSD cutoff of 2.0 Å is too high for fragments.
Between 1.5 and 2.0 Å RMSD, fragment dockings frequently
contain significant errors, e.g., where key interactions are missed
or the overall orientation of the ligand is significantly different

from that in the X-ray structure (see Figure 1). Having inspected
hundreds of the fragment dockings presented in this study, we
believe an RMSD cutoff of 1.5 Å is much more appropriate for
fragments and is in line with a 2.0 Å cutoff for druglike compounds.
Hence, in this work we have used two different RMSD cutoff values
to define docking performance: 2.0 Å for druglike compounds and
1.5 Å for fragments. Results for both thresholds and both sets are
presented in the Supporting Information.
For each ligand i, we also defined a combined success rate, p(i),

in which the results from all docking/scoring protocols and all
repeats are taken into account:

pðiÞ ¼ ncorrectðiÞ=ntotalðiÞ
where ntotal(i) is the total number of docking/scoring protocols
and repeats available for ligand i and ncorrect(i) is the number of
these cases for which the RMSD of the top-scoring docking
solution is within the defined cutoff value (i.e., 2.0 Å for druglike
compounds and 1.5 Å for fragments). ntotal(i) can be written as

ntotalðiÞ ¼ ndfnsfnrepeatsnconf ðiÞ
where ndf is the number of scoring functions used to drive the
dockings (i.e., 4), nsf is the number of scoring functions used to
score each docked solution (i.e., 5), and nrepeats is the number of
times each docking run was repeated (i.e., 3). nconf(i) is the
number of protein conformers considered for ligand i. For native
and ensemble docking nconf(i) = 1 (only the native protein
conformer and the best scoring non-native protein conformer are
considered, respectively). For non-native docking nconf(i) is the
number of non-native protein conformers available (9 in most
cases).
The idea is that p(i) reflects how straightforward or difficult it

is to predict the binding mode for ligand i when a range of
different docking/scoring protocols are considered. In an analo-
gous manner, for a particular set of ligands j, we can define the
combined docking performance for this set as

PðjÞ ¼
∑
i
pðiÞ

NtotalðjÞ
where the summation is over the ligands in set j and Ntotal(j) is
the total number of ligands the set.

Figure 1. Examples of docking solutions of fragments with RMSD values varying between 1.0 and 2.0 Å.
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’RESULTS AND DISCUSSION

Test Set Composition.Table 2 lists the targets included in the
test set constructed here. On average, the MW of the fragments
is about 150 Da lower than that of the druglike compounds.
Because a diversity criterion was used during the selection of
compounds, the resulting sets contain ligands with a wide
potency and ligand efficiency (LE) range. Also, the diversity of
the compounds, combined with the nature of some of the targets,
makes these test sets tough but realistic for structure-based drug
discovery projects. For example, several of the kinase compounds
bind away from the so-called hinge region. We have included
ligands that induce different conformations of the “flap” in
β-secretase. Both “DFG-in” and “DFG-out” conformations were
included for p38, and for HSP90A examples of the “collapsed”
and “un-collapsed” helix around Gly108 were included.
Interestingly, although it was outside the scope of this work

(we specifically wanted a set of structures from in-house
projects), we believe it would have been impossible to construct
a test set like this from the PDB, particularly when the same
quality standards are applied. To illustrate this, we applied the
same filters (drug/fragment-likeness, structure factors deposited,
ligand diversity, no clashes or symmetry contacts) on all PDB
structures for the 85 targets in the Astex diverse set. For only two
of these targets (Cdk2 and carbonic anhydrase II) are there at
least five complexes containing fragment ligands and five com-
plexes containing druglike ligands in the PDB.
Overall Docking Results. Docking performance for frag-

ments and druglike compounds is given in Table 3. Overall,
docking performance is relatively poor compared to the other
test sets we have reported docking validations on (see below). As
we and others have seen before, there is a significant drop-off
from native docking to non-native docking performance of
roughly 20�30% depending on the scoring functions used.
Some of this performance loss (about 5�15%) can be regained
by using an ensemble docking protocol. Compared to the other
three scoring functions, ChemPLP performs consistently well,
giving the best direct docking performance (i.e., without re-
scoring) for native, non-native and ensemble docking for both
fragments and druglike compounds. Rescoring the docking
solutions with a second scoring function gives a slight improve-
ment in docking performance in some but not all cases.
AMBER Results. Because the docking performance on these

sets is relatively poor, we decided to investigate whether a force-
field based scoring protocol would improve the results. Apart
from a more sophisticated description of the interactions, the
energy minimization also allows the protein to relax in the
presence of the ligands and should hopefully deal with small
induced fit effects. Rescoring docking solutions using force-field-
based methods is not a new concept. Already in 1999, Hoffmann
and colleagues minimized docking solutions produced by FlexX
in the CHARMM force field and observed a significant improve-
ment in binding mode prediction.40 Recently, and specifically for
fragment docking, Gleeson and Gleeson observed that rescoring
docking solutions using QM/MM force fields improved binding
mode predictions significantly for a small set of structures of
fragments bound to kinase targets.41

The results for the AMBER rescoring protocol applied on our
in-house set are shown in Table 3. Overall the results are
encouraging; on a naive basis, for the 24 docking protocols used
(native, non-native, and ensemble docking for both fragment and
druglike sets, with 4 scoring functions), AMBER is the best

Table 3. Docking Performance for the Fragment and Drug-
like Setsa

Fragment Set
rescoring

native docking Goldscore Chemscore ChemPLP ASP AMBER

Goldscore 56.3(2.9) 65.1(2.8) 66.7(1.4) 50.3(2.4) 69.5(2.0)

Chemscore 66.0(0.9) 61.6(0.5) 68.9(0.0) 48.7(2.4) 67.9(1.6)

ChemPLP 62.6(2.2) 60.7(1.1) 63.5(2.0) 51.9(0.9) 69.2(2.0)

ASP 58.5(2.5) 56.9(2.4) 63.5(1.4) 45.3(1.6) 62.6(0.5)

rescoring

non-native docking Goldscore Chemscore ChemPLP ASP AMBER

Goldscore 31.6(0.4) 41.1(0.6) 39.2(0.4) 36.5(1.4) 41.0(0.3)

Chemscore 36.1(0.9) 35.2(0.9) 38.0(0.7) 34.9(0.5) 42.6(0.3)

ChemPLP 33.8(0.4) 37.6(0.2) 35.6(0.2) 33.2(0.2) 41.2(0.3)

ASP 33.9(0.4) 37.2(1.5) 38.3(1.0) 32.3(0.4) 40.2(0.1)

rescoring

ensemble docking Goldscore Chemscore ChemPLP ASP AMBER

Goldscore 36.8(1.9) 47.2(0.9) 42.6(2.3) 38.4(3.7) 51.9(3.4)

Chemscore 40.7(3.4) 38.9(2.0) 40.6(0.9) 38.7(2.1) 58.5(1.9)

ChemPLP 37.7(3.5) 42.6(2.6) 41.2(0.8) 34.3(0.5) 53.1(0.5)

ASP 39.5(3.6) 40.7(2.6) 40.6(0.8) 33.7(2.1) 50.9(1.9)

Druglike Set
rescoring

native docking Goldscore Chemscore ChemPLP ASP AMBER

Goldscore 58.3(1.2) 69.0(1.0) 68.3(0.6) 66.0(1.0) 66.7(0.6)

Chemscore 61.0(3.5) 59.7(0.6) 68.0(1.7) 61.7(2.3) 69.3(4.9)

ChemPLP 65.7(0.6) 65.0(1.0) 70.3(1.5) 66.3(0.6) 75.7(2.5)

ASP 60.3(2.5) 60.0(4.6) 64.0(2.0) 54.0(1.0) 67.3(4.6)

rescoring

non-native docking Goldscore Chemscore ChemPLP ASP AMBER

Goldscore 26.3(0.4) 35.7(0.4) 34.2(0.1) 31.2(0.3) 34.7(0.7)

Chemscore 27.6(0.5) 29.5(0.1) 29.5(0.1) 26.6(0.3) 33.1(0.5)

ChemPLP 26.8(0.6) 29.9(0.7) 31.6(0.3) 28.5(0.8) 33.8(1.1)

ASP 27.7(0.8) 30.7(0.6) 31.6(0.4) 27.3(0.5) 31.7(0.6)

rescoring

ensemble docking Goldscore Chemscore ChemPLP ASP AMBER

Goldscore 28.8(2.5) 47.0(4.4) 56.0(1.7) 35.9(1.6) 47.3(2.9)

Chemscore 34.9(1.5) 43.3(0.6) 47.7(2.3) 31.7(2.9) 52.3(3.2)

ChemPLP 36.3(1.5) 42.5(3.1) 49.0(1.7) 34.0(3.6) 48.3(2.9)

ASP 38.3(2.9) 42.5(6.1) 50.5(4.8) 35.2(5.3) 46.7(0.6)
aResults are shown for native, non-native, and ensemble docking and for
all combinations of docking/scoring functions. An RMSD cutoff value of
2.0 Å is used to define docking performance for druglike compounds,
whereas a cutoff of 1.5 Å is used for fragments. Standard deviations over
the three repeats are shown in parentheses. The best-performing dock-
ing protocol and the best performing rescoring protocol are boldface in
each section.
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performing rescoring protocol on 16 occasions. The results look
better for the fragment set in isolation, with the AMBER protocol
performing best for 9 out of the 12 docking experiments.
Particularly encouraging is the performance for ensemble docking
with the fragment set, where the AMBER results are substantially
better than any other protocol. The results for the druglike set are
more equivocal, and from Table 3 it is hard to argue that for this
set rescoring with AMBER is the best protocol. However, even
for this set its performance appears similar to that of the best
performing traditional scoring function (ChemPLP).
It is not immediately apparent why the AMBER rescoring

protocol should be more successful for the fragment set than the
druglike set. One possibility is that (as commonly hypothesized)
fragment docking performance is more dependent on the quality
of the scoring function used (although this does of course
presuppose that this AMBER protocol is a better scoring func-
tion than the others tested here). Another possibility is that the
parametrization of the force field (and AM1-BCC charges) is
better for smaller molecules than larger ones. The fragments in
general will be less flexible than the druglike compounds; so
perhaps the conformational energetics of the druglike ligands are
being poorly modeled. Also, docking solutions for smaller
compounds may provide better starting points for AMBER
energy minimization because the energy landscape is likely to
be less rugged than that for docking solutions for larger, more
complex molecules.
Fragments vs Druglike Compounds. The hypothesis that

fragments may be harder to dock than druglike compounds is not
supported by the results shown in Table 3. If the appropriate
cutoff values are used (i.e., 2.0 Å for druglike compounds and
1.5 Å for fragments), the docking performance is generally very
similar between fragments and druglike compounds. If we apply
the commonly used threshold of 2.0 Å to both sets, fragments
actually appear easier to dock. However, as discussed previously,
we do not believe that this is an appropriate analysis.
A much more comprehensive way to compare docking

performance of fragments and druglike compounds is to calculate
the combined docking performance for both sets (see Table 4). It
is clear that when all docking and scoring protocols are con-
sidered, the docking performance for fragments is not lower than
that for druglike compounds. For non-native docking, the
difference in performance is close to being statistically significant
(in favor of docking fragments), but for native docking and
ensemble docking (the latter being the most relevant bench-
mark) there is no significant difference.
We wanted to understand to what extent docking failures for

fragments and druglike compounds are due to inadequate

sampling or due to incorrect scoring. Hence, in order to simulate
the situation where the docking program always generates the
correct binding mode as one of its solutions, we added the X-ray
binding modes (see Methodology) to the list of possible docking
solutions for native, non-native, and ensemble docking. In
addition, for ensemble docking, we added the dockings against
the native protein conformation; this simulates the situation
where the docking program always has the correct protein
conformer available in the ensemble of protein conformers it
docks the ligands against. Figure 2 shows the effect on combined
docking performance for fragments and druglike compounds,
when these extra solutions are added. What is immediately clear
from this plot is that the effect of adding “correct” solutions to the
list of binding modes is larger for druglike compounds than it is
for fragments. For example, when the X-ray binding modes of the
ligands are added (horizontally striped bars), the improvement in

Table 4. Combined Docking Performance for Subsets of the Astex In-House Seta

N native docking non-native docking ensemble docking

fragment 106 61%
p = 0.39

37%
p = 0.051

42%
p = 1.0

druglike 100 65% 30% 42%

low potencyb 94 61%
p = 0.27

37%
p = 0.33

46%
p = 0.84

high potencyb 83 66% 33% 45%

low LEc 87 55%
p = 0.00022

26%
p = 0.0000048

35%
p = 0.0000062

high LEc 86 73% 45% 57%
aResults are shown for native, non-native, and ensemble docking, and estimated significance levels are given for differences between subsets. bLow-potency
compounds have IC50 > 10 μM. High-potency compounds have IC50 < 10 μM. cLow-LE compounds have LE < 0.40. High LE compounds have LE > 0.40.

Figure 2. Effect of including information of the experimental binding
modes on the combined docking performance for fragments and druglike
compounds. Results are shown for native (blue), non-native (red), and
ensemble docking (green). Standard combined docking performance is
represented by the solid bars (these are the results shown in Table 4).
Horizontally striped bars represent the experiments where the X-ray binding
modes of the ligands were added to the list of docking solutions. For
ensemble docking, results are also shown for which the dockings against the
native protein conformer were included but the X-ray binding modes of the
ligands were excluded (diagonally striped bars) and for which all X-ray
binding modes and docking solutions against all protein conformers
(including the native one) were included (checkered bars).
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combined docking performance for druglike compounds is 17%,
18%, and 15% for native, non-native, and ensemble docking,
respectively. For fragments, the corresponding improvements
are only 9%, 10%, and 6%, respectively. Similarly, when the native
protein conformation is included for ensemble docking, the
combined docking performance improvement is 12% for drug-
like compounds vs 6% for fragments. It is interesting to note that
for ensemble docking, adding the native protein conformer does
not recover docking performance to the performance obtained
for native docking because of the noise introduced by the scores
obtained against the other protein conformers.
In Figure 3, docking outcomes for ensemble docking are

categorized as successful dockings, sampling failures, and scoring
failures, based on the data presented in Figure 2 (see Verkhivker
et al.42 and Mukherjee et al.43 for similar analyses). For fragments,
the vast majority of docking failures are a result of poor scoring;
i.e., even when correct solutions are generated, they are often not
scored better than incorrect ones (see Figure 4 for an example).
For druglike compounds, however, a significant proportion of
docking failures is caused by insufficient sampling (see Figure 5
for an example). In other words, although in practice we observe
no significant difference in docking performance between frag-
ments and druglike compounds (see Table 4), in the theoretical
case where the docking program always generates the correct
binding mode as one of its solutions (chequered bars in
Figure 2), fragment docking is significantly more difficult than
docking druglike molecules. This is consistent with the assump-
tion that energy gaps (and score differences) between different
binding modes are smaller for fragments than they are for
druglike compounds. The fact that accurate scoring is the key
problem for fragment docking might also explain why rescoring
with a more sophisticated scoring function like AMBER has a

much larger impact on the docking performance of fragments
than it does for druglike compounds (see above).
It is worth pointing out here that there are several factors

contributing to what are considered “sampling failures” in Figure 3.
Themost obvious cause of a sampling failure is when the docking
program fails to sample solutions close to the experimental
binding mode (for example, because it does not vary a particular
internal degree of freedom of the ligand). In addition, the 3D
ligand geometries that were used for the docking experiments
were generated using Corina, and it is possible that this could

Figure 3. Docking outcome distributions for ensemble docking of
fragments and druglike compounds. “Successful dockings” corresponds
to the combined docking performance for standard ensemble docking.
“Sampling failures” represents the percentage of cases for which a
docking can be “rescued” either by adding docking solutions against
the native protein conformation or by adding the X-ray binding mode of
the ligand to the list of docking solutions. “Scoring failures” represents all
remaining cases, i.e., cases for which all correct solutions (including the
X-ray structure of the native protein�ligand complex) score worse than
an incorrect solution.

Figure 4. Example of a typical docking failure for fragments. This is a
native docking example against Cdk2, where Goldscore was used to
generate the binding modes and ChemPLP was used to score them. The
X-ray structure is shown in gray. The top-scoring bindingmode (orange) is
incorrect (RMSD = 2.46 Å, Score = 36.1). A solution very close to the
experimental binding mode is generated by the docking algorithm
(green, RMSD = 0.60 Å), but it scores slightly worse (Score = 35.2).

Figure 5. Example of a sampling failure for druglike molecules. This is a
native docking example against β-secretase, where Goldscore was used
both to generate and to score the binding modes. The X-ray structure is
shown in gray. The top-scoring solution shown in orange is incorrect
(RMSD = 7.29 Å, Score = 56.2). Although the placement of the
2-aminopyridine moiety is mostly correct, the rest of the molecule has
not been docked correctly. The docking algorithm does not produce any
solutions that are close to the experimental binding mode. However,
when the X-ray binding mode is relaxed and scored in the Goldscore
function (shown in green), it scores significantly better than the top-
ranked docking solution (RMSD = 0.85 Å, Score = 66.7).
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prevent the experimental binding mode of the ligand to be
generated (it is difficult to decide where ligand geometry
sampling becomes the responsibility of the docking program).
Finally, sampling failures can be caused by not including a protein
conformation in the ensemble that is close enough to the native
protein conformer. From the ensemble docking results in
Figure 2, it appears that about half of the sampling failures are
due to poor ligand geometry sampling (either because the docking
program fails to sample the correct conformer or because theCorina
geometry prevents sampling of the bioactive ligand conformer);
the rest of the sampling failures are due to inadequate protein
conformer sampling (i.e., because no protein conformer was
included that was close enough to the native protein conformer).
The results in Figures 2 and 3 also indicate that if sampling

could be improved for druglike compounds, docking perfor-
mance could be improved significantly. Interestingly, in 92% of
the ensemble dockings of druglike compounds, a solution with
RMSD < 2.0 Å is generated by the docking program. However,
this appears not to be close enough to the experimental binding
mode for these solutions to be top scoring. Although outside the
scope of this study, it would be interesting to investigate (for the
ligand sampling failures in Figure 3) how close a solution needs
to be to experiment in order for it to become the top scoring
solution.
Potency and Ligand Efficiency. It is clear that the docking

performance obtained for both the fragment and the druglike set
is much lower than the docking performance we have previously
reported on the Astex diverse set19 and the Astex non-native set17

(see Table 1). These differences cannot be attributed to the
quality of the structures, the experience of the researchers, the
preparation of ligand and target structures, the docking pro-
grams, or the docking protocols used, as all these factors are
largely unchanged between these studies. Instead, the difference
in docking performance has to be related to the types of targets
and ligands that were included. The comparison between frag-
ments and druglike compounds (see above) showed that mo-
lecular size is not a key parameter affecting docking performance.
One possible hypothesis might be that more potent compounds
are easier to dock than weaker binding compounds. Hence, we
split our complete set (fragment and druglike combined) into a
high-affinity set and a low affinity set and calculated the com-
bined docking performance for both sets (see Table 4). It is clear
that for native, non-native, and ensemble docking there is no
significant difference in performance between high-affinity and
low-affinity ligands.
However, when the complete set is split into a low ligand

efficiency (LE)44,45 and a high LE set, then there is a clear difference
in combined docking performance: for native, non-native, and
ensemble docking, the combined docking performance is sig-
nificantly higher for high-LE complexes. Intuitively, this appears
to make sense, as the high LE compounds are likely to form both
a greater number and higher quality of interactions (relative to
their size) and may therefore be more straightforward to dock
correctly (both in terms of scoring and sampling) than low LE
compounds. One might suspect that the performance difference
observed between the high LE set and the low LE set is driven
largely by the types of targets in the sets. However, when the
three targets with the lowest average LE (β-secretase, p38, and
urokinase) are removed from the analysis, the results are essentially
the same (results not shown).
We also reanalyzed the docking performance for the Astex

non-native set in terms of the LE of the compounds in that set.

To do this, we used the potency values we extracted from
the literature for the entries in the set.19 We did not rerun all
dockings using the protocols described here but instead used the
native and non-native docking results obtained previously with
Goldscore.17 When the entries in the Astex non-native set are
split into a high-LE set and a low-LE set, a similar difference in
docking performance is observed: for native docking the docking
performance is 73% for the low-LE set vs 89% for the high-LE set,
and for non-native docking the docking performance is 47% for
the low-LE set vs 68% for the high-LE set. Unfortunately,
however, because of the small sample sizes, these performance
differences are not statistically significant to the same level as we
observe for the in-house set described in the present paper (p =
0.12 and p = 0.10 for native and non-native docking, respectively).
If we compare the subsets of entries in the Astex diverse set and

the current Astex in-house set for which LE data are available, the
average LE values of the two sets differ only marginally (0.43 for
the Astex diverse set vs 0.40 for the Astex in-house set). However,
the Astex diverse set contains a much higher fraction of very high
LE (>0.60) complexes than the Astex in-house set (12% vs 1.5%),
and the docking performance for these complexes in the Astex
diverse/non-native set is high (100% for native, 86% for non-
native docking). Also, for a significant fraction (29 complexes) of
the Astex in-house set, no suitable potency data are available to
derive a LE value (these were also left out of the calculation of the
average LE value). Most of these 29 complexes will in reality have a
low LE, and the combined docking performance is poor for these
examples (59%, 7%, and 14% for native, non-native, and en-
semble docking, respectively). Hence, although it is impossible to
conclude categorically that LE differences are responsible for the
difference in docking performance observed between the Astex
diverse/non-native set and the Astex in-house set, the results
presented here strongly suggest that LE plays an important role.

’CONCLUSIONS

The construction of a test set of X-ray structures of pro-
tein�ligand complexes from Astex in-house drug discovery
projects was described. Half of the complexes in this set contain
fragment ligands, and the other half contains druglike ligands.
The docking performances obtained in this study, although in-
line with the results Warren et al. obtained for their in-house
set,20 are poor; even using the AMBER force field to optimize
and rescore binding modes, the best docking performance for
ensemble docking is only 59% for fragments and 52% for druglike
compounds. We believe that in the setting of a drug discovery
project, the docking performance is normally significantly higher
because modelers will utilize any structural data available on the
system they are working on in order to improve the docking.
There are various ways of using structural information about
target and ligands within a docking program, including hydro-
gen-bond constraints, pharmacophore constraints, adding ligand
similarity overlap to the docking score, interaction fingerprints,
etc., all of which should improve docking performance.

We have used an Astex in-house set of protein�ligand
complexes to investigate which parameters affect docking per-
formance. Interestingly, no correlation was observed between
docking performance and the potency of the ligands in the set.
However, docking performance for high ligand efficiency com-
pounds was significantly higher than that for low LE compounds.
We believe the reason behind this could be that high LE
compounds form high-quality interactions with the target, which
should make it easier for a docking program (both from a scoring
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and searching perspective) to dock these compounds correctly. LE
differences could also go some way toward explaining the differences
in docking performance betweendifferent test sets. It seems likely that
carefully constructed test sets based entirely on high-quality structures
from the PDB (with the ligands often being drug molecules or
close analogues) would contain more high LE complexes than
test sets that consist of protein ligand complexes determined to
generate structure�activity data for drug discovery projects.

Although it is outside the scope of the current study, it would
be interesting to investigate whether LE has a similar effect on
enrichments obtained in docking-based virtual screening. If high-
LE compounds are docked better in a virtual screen, then one
might also expect them to have better scores (and therefore rank
closer to the top) than low-LE compounds.

Our study also revealed no significant difference in docking
performance between fragments and druglike compounds. However,
an analysis of the types of docking failures highlights an interesting
difference between docking fragments and docking druglike com-
pounds. For fragments themain problem is that the scoring functions
used are often unable to distinguish the correct binding mode from
incorrect ones. For druglike compounds, however, in a significant
proportion of cases, the docking program does not generate a
solution close enough to the X-ray binding mode for it to be top-
scoring. Therefore, whereas for druglike molecules significant
improvement in docking performance can be expected from
improved sampling alone, for fragments essentially any perfor-
mance improvement will need to come from improvements in
the scoring functions. The most likely methods for achieving
improved scoring for fragments are probably force-field-based
scoring protocols and other more advanced methods for evalu-
ating protein�ligand interaction energetics. The simple AMBER
rescoring protocol we applied here shows that such methods do
have the scope to improve docking performance for fragments.
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